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Stochastic quantum Langevin equation 
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75231 Paris Cedex 0505, France 

Received 1 June 1988. in final form 27 October 1988 

Abstract. The stochastic representation of quantum mechanics is used to give a purely 
stochastic treatment of the quantum Langevin equation. A general coupling involving 
positions and velocities of the particle and harmonic modes, with arbitrary dependence 
on the particle’s position, is dealt with. Summing over the modes in the path integral and 
using stochastic integrals, one obtains explicitly the reduced measure, that is, the stochastic 
process representing the time evolution of the small system in the presence of noise. Contact 
is made with the operatorial representation, and a relation is established between the 
correlations of the noise in both representations. A general condition on the coupling 
constants is given for recovering time locality in the continuum limit, and the effects of 
renormalisation are re-analysed within this purely stochastic approach. 

1. Introduction 

Since its introduction in the phenomenological description of Brownian motion 
(Langevin 1908), Langevin’s equation has become a generic description of motion in 
the presence of noise (Van Kampen 1981). In classical mechanics, this received a 
precise formulation within the framework of stochastic processes, where the classical 
(differentiable) trajectory is replaced by a statistical measure on a set of fluctuating 
(non-differentiable) trajectories (Wiener 1923). The Langevin equation is then better 
seen as a stochastic differential equation, for which a stochastic differential and integral 
calculus has been developed (It6 1951, Schuss 1980), generalising the classical resol- 
ution of the equations of motion. Quantum mechanics has made it necessary to revise 
the description and to formulate a corresponding quantum Langevin equation (Mori 
1965, Ford et a1 1965). This also led to the quantum generalisation of stochastic 
processes, non-commuting stochastic processes (Lewis and Thomas 1975, Davies 1976), 
and  to the associated calculus (Hasegawa and Streater 1983, Hudson and  Parthasarathy 
1984). This last development accounts both for fluctuations having their origin in the 
‘purely’ statistical aspects of the problem (the presence of noise), and for fluctuations 
resulting from ‘purely’ quantum aspects. Accordingly, the formalism mixes operators 
and  measures in a novel and rather complex way. 

Meanwhile, other representations of quantum mechanics were also developed, 
which progressively established a close connection between quantum mechanics and  
stochastic processes. The first efficient representation was given by Feynman (1948), 
in terms of path integrals. Although defined in an intuitive way, the path integrals 
already represent quantum mechanics by generalising the classical trajectories to 
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randomly fluctuating paths. Since then, a sound mathematical basis has been given 
to path integrals by means of stochastic processes (Glimm and Jaffe 1981). Further 
developments improved the equivalence between the operatorial and the stochastic 
representations of quantum mechanics (Nelson 1966) and tended to show that the 
latter is more than an  alternative formal description, but can even constitute a genuine 
physical approach to quantum phenomena. Indeed, this approach aims at showing 
that quantum motion is like Brownian motion, where the noise is induced by the 
vacuum (like in the background field hypothesis (Nelson 1985)). 

Path integrals, when used to describe a small system coupled to a bath (Feynman 
and Vernon 1963) already appear particularly well suited for treating simultaneously 
pure quantum effects and  statistical effects, like tunnelling and dissipation (Caldeira 
and Leggett 1981). However, one would like to exploit the stochastic background of 
this formalism and  relate it to the statistical nature of the Langevin equation. In  view 
of the equivalence between the stochastic and the operatorial representations of 
quantum mechanics, the question naturally arises whether the quantum Langevin 
equation can be formulated within a purely stochastic framework. This would result 
in a formalism where fluctuations due to the noise induced by the bath and quantum 
fluctuations are treated in the same way, that is, where only measures appear, instead 
of measures and operators. 

This paper is devoted to this approach. A purely stochastic treatment of the quantum 
Langevin equation relies on representing both the small system and  the bath (taken 
to be an infinite set of harmonic oscillators) by a stochastic process which will generate 
all the desired quantum correlation functions, that is, the rigorous form of the related 
Feynman path integrals. A general coupling between the positions and velocities of 
both the particle and the modes will be envisaged, so that additional It6 terms will 
appear (DeWitt 1957, MacLaughlin and Schulman 1971). The formalism of stochastic 
processes will allow one to deal with them and will also provide the stochastic integrals, 
which are necessary for expressing the contribution of non-differentiable trajectories. 
The present treatment will turn out to cover previously studied cases (Caldeira and 
Leggett 1981, Ford et a1 1985, Ford and Kac 1986, Nakazawa 1986) and others. A 
general condition on the coupling constants will also be obtained for recovering a 
process which evolves locally in time in the limit of a bath consisting of a continuum 
of modes, with the related feature of two renormalisations affecting the resulting 
stochastic process. 

2. Quantum Langevin path integrals 

This section reconsiders a program which has been described by Ford er al (1965) 
(and which, as they note, goes back to Gibbs): consider a small system coupled to a 
bath, which for the sake of solvability, is supposed to consist of a set (even infinite) 
of harmonic oscillators; eliminate the degrees of freedom of the bath, up  to their initial 
(final) values; for various statistical distributions of these boundary values, study the 
resulting statistical properties of the degrees of freedom of the small system. The aim 
of this approach is to show that a Langevin-type equation (as is proposed on 
phenomenological grounds) does indeed govern the time evolution of the small system. 
Ford er a1 solved this problem within the frameworks of classical and quantum 
mechanics, that is, by solving ordinary and then operatorial equations of motion. Here, 
the quantum problem will be reconsidered, using a stochastic representation of quantum 
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mechanics. Instead of solving the equations of motion for the bath degrees of freedom, 
we shall integrate over the latter, in the measure which generates the different correlation 
functions or Green functions. Before attacking this program, we shall need the correct 
measure that will describe, in this formalism, the quantum evolution of the whole 
system. 

2.1. DifSusion processes and stochastic representation 

Let us first consider, quite generally, N + 1 degrees of freedom, which will be represen- 
ted by N + 1 time-dependent random variables (x’ ( t ) ) i=o ,N obeying a diffusion process, 
i.e. such that 

dx’ = x ’ ( t  + d r )  - x r ( t )  

(dx’), = b‘(x) d t + o ( d t )  

(dx’ dx’), = 2v”(x)  d t + o ( d t )  

(dx’l dx’z . . . dx’r), = o(dt)  

with dt  + 0 

where t is the time parameter and ( )x denotes the expectation value, conditional in 
~ ‘ ( t ) ;  b’(x)  is the drift field and v”(x)  is the diffusion field. Such a process (with 
further conditions on b and U that will be specified later) gives a stochastic representa- 
tion of the quantum system described by the N+ 1 degrees of freedom x ’  (xo for the 
small system and ( x i ) , = l , N  for the bath). We shall first write the expression of the 
joint probability CP of the variables x’(r) ,  in the case when the process is supposed to 
be Markovian (for the whole set of variables ( x ’ ) , = ~ , ~ ) .  If p(ro) denotes the probability 
density of the variables x’(  to) ( ro will go to -CO),  the joint probability is then completely 
determined and given by 
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This follows from the Markov property and  the fact that the conditional probability 

is a solution of the Fokker-Planck equation (Jaekel and Pignon 1985): 

a 
ax" 

a , P + a ~ [ ( b " - a ~ v " ) ) P ] = O  a :  =-; b" = b ' ( x ' ) ,  v"J = ~"(x'). 

As usual with Markovian processes, these stochastic integrals must be understood as 
It6 integrals; that is, by definition, for any diffusion variables f and g 

1 n - l  

t, = to + - ( t i ,  - t o )  
n I l r I J f d g  10 = n-a3 lim i = o  c f ( f l ) [ g ( r ! + , )  - g ( t , ) l  

thus corresponding to non-anticipating functions. 
For q an  arbitrary function of x and t ,  the measure can also be rewritten as 

d Y = d S - d q  has still the form of d S  in ( I ) ,  where v u  is left unchanged (and so are 
v,,, Y i j k  and T v k , ) ,  P I  has been replaced by p, -d,g, (and thus by E', -$3,a,q), and 6 
has been replaced by 6 - d l q .  Now, if the classical Lagrangian that determines the time 
evolution of the degrees of freedom is a general quadratic expression in the velocities, 
i.e. of the following form: 

a pure state will be defined as a set of two functions p and q (or and 4*) satisfying 

(3) 
m 'I 
2 

_-  (hd ,q-a , ) (ha ,q-a , )+ v = o  ij = q -f lnlvl 

With a pure state (p ,  q )  will be associated the Markovian diffusion process which has 
probability density p, diffusion field v" and drift field b' given by 2v" = hm", b' = 
p '  - m y (  hajj - a,) .  The second equation of (3) is then the Fokker-Planck equation 
governing the time evolution of the probability density according to the diffusion 
process just defined, while the first equation of (3) provides a dynamical evolution 
according to the classical Lagrangian (2). In this way, for this classical Lagrangian, 
any related pure state (4,  $") or any mixed state (defined by a linear combination 
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(Jaekel and Pignon 1984)) is associated with a diffusion process having the following 
joint probability: 

= a t ; ,  fn)B $(?A, t o )  =C  ~n$;(tb)$,(to) 
n 

dx '  dx' dx '  dxJ d x k  dx '  dxJ d x k  dx' 
h dY=fm,---- i-2y!,k(m) d t  +2Ti,kl(m) d t  - a ,  dx '  

dr 

+&,(-a, m)  dx '  d x J +  V df 

where $ characterises a mixture, with probabilities A,, of states $n (mixed states for 
both the small system and the modes must be envisaged, if only to include thermal 
states). In particular, the correlation functions of this state will be given by 

The path integral representation of quantum mechanics (DeWitt 1957) is then obtained 
by making Wick's rotation: 

t .+ -i t  a ,  --$ ia,. ( 5 )  

In this limit, $ ($*) becomes the wavefunction of the state (its complex conjugate), 
which satisfies the Schrodinger equation (3) corresponding to the (classical) Lagrangian 
(2). The correspondence between a classical Lagrangian 2 and a diffusion process 9' 
is achieved by requiring that h d Y  should have 2 d t  as a limit when the random 
variables become differentiable, i.e. when dx '  - d t  and dx '  dx' . . . dxk = o(dt)  (classical 
limit). This, after Wick's rotation ( 5 ) ,  provides the path integral representation of the 
quantum system governed by the Lagrangian defined in ( 2 ) .  The correlation functions 
of the process then identify with the time-ordered quantum correlation functions of 
the degrees of freedom xl(t):  

In this limit, the correspondence between quantum states and stochastic processes also 
identifies with Nelson's (Nelson 1966, Guerra 1981). The strategy in the following 
will be first to apply the program defined at the beginning of this section to the general 
measure (4) associated with a well chosen classical Lagrangian, and then to perform 
Wick's rotation at the end. 

2.2. Reduced measure 

The classical Lagrangian will be chosen to describe the time evolution of a small 
system, with degree of freedom denoted by xo, coupled to a set of harmonic oscillators, 
denoted by xk,  k = 1, N (with N going to infinity), and playing the role of the bath. 
The coupling will be assumed to be at most quadratic in the velocities, 1' and x h  (so 
as to remain within diffusion processes), and linear with respect to the harmonic modes' 
positions and velocities, x h  and xh.  But the coefficients will be allowed to depend 
arbitrarily on the small system's variable, xo. This general quadratic coupling will 
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include previously studied cases (Ford and Kac 1986, Nakazawa 1986, Caldeira and 
Leggett 1981) with that of a particle coupled to the electromagnetic field (Ford et a1 
1985). With these assumptions, the most general classical Lagrangian will be written 
as 

where m,, V ,  (Yk, Pk, Yk, ak are functions of t and xo only, and 
N 

' d f  f= -=aa , f+C d'fi'. 
d t  t = O  

The joint probability 9' of the process will be written according to (4) as 

1 dx" 
9 x = n - n -  

9' = at;, t o ) 8  $ = e x p (  - I  [,%dY.)&x r m o , f i  
(dX0)4+ Eo(dx0)'+ V dt  

mo (dx')' mb ( d ~ ' ) ~  
2 d t  4 d t  dt  hdY.=-- +-- +to- 

(7) 
al, dxo d x k  (ul(dx0)2 d x k  af(dx') '  d x k  + + + P i x k  dxo -'[ k = l  d t  2 d t  6 d t  

1 + ( d r ( u k  + Y k )  d x k  + dxo dXk + (a$, - 8k)Xk dt  2 

where f' = a, f and 

As is apparent in this expression, coupling to the velocities results in the occurrence 
of new terms that vanish in the classical limit (when dx '  is of order dt) ,  but do 
contribute to the integral for a generic path (when dx '  is of order a). These It6 
terms (MacLaughlin and Schulman 1971), the coupling ones being proportional to 
ak,  P k ,  Yk, will be naturally dealt with in the following. Wick's rotation ( 5 )  will 
correspond to 

r + - i t  P k  i P h  YA + i Y k .  

After integration on all variables x k (  t ) ,  except for the initial and final time variables 
xk(tO) and x k (  tb) ,  the remaining reduced measure will provide the joint probability 
for the small system's variables at any time x o ( t ) ,  and for the bath variables at initial 
and final times only x k  and xlk: 

P=p*(tA,  to)$ 

2 = exp ( - I ' I '  d g )  a x o  n dx' dx" 
x"( ! ) , X I  ( i ( , ) = x  A , X ' ( l O ) = X h  1 0  k 

$=[ 
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N 
fi,=m,- c aL2 

1 dx“ 6j)xo=fl-- 
tma h = l  

1,; ‘;) f i0 (dx0)2 f i b  ( d ~ ’ ) ~  ( d ~ ’ ) ~  m +-- + e o -  +> (dx0)2+ v d t  + dq, 
‘[lo dY=)[lo ( T T  4 d t  d t  4 

+ Y+;(dp+dy) d x + ( d p - S d t ) x  9 x  ) I 
j k  = ( f fk ,  P k ,  Y k ,  6,) 

( 
j = ( f f ,  P, Y, 8) 

where terms have been arranged together into total differentials: 

f f l ’  ff 

2 6 
d a  = ~ ~ ~ d x ~ + - ( d x ~ ) ~ + d , ~ ~  d t + - ( d ~ ~ ) ~ + d p ’ d x ~ d t  

P ”  d p  = P ‘  dxo+- (dxo))’+d,P dl  
2 

when developed up to contributing order. 
Performing this integration and obtaining an explicit expression for the reduced 

measure will thus realise the second step of the program. This will provide the basis 
for a discussion of the nature of the process governing the small system, depending 
on the nature of the fluctuations in the initial and final states of the bath. At this point, 
this choice (of initial and final values of the bath variables) for boundary conditions 
is different from the usual one and might seem unsuited to (usual) physical situations. 
But, recalling the definition of the measure (4), this choice is dictated by the way the 
quantum state enters the path integral and thus completes the determination of its 
associated stochastic process. As will be discussed in the next section, the present 
derivation will nonetheless make contact with the standard time asymmetric treatment 
of the Langevin equation. 

The solvability of the model, i.e. the possibility to realise explicitly the program’s 
second step, results as usual (Ford et a/ 1965) from the choice of harmonic oscillators 
for representing the bath degrees of freedom. Here, the solvability takes the form of 
Gaussian integrals in the measure describing the bath degrees of freedom. It is well 
known that the result of this integration is given by the value of the Gaussian kernel 
at its extremum (with fixed boundary values: x at to and x’ at th) .  As the Gaussian 
kernel has been obtained from the classical Lagrangian (where the xO-dependent terms 
can be considered as source terms), the extremum identifies, for each oscillator x’, 
with the classical solution running from x h  at to to XI‘  at th .  Thus, the stochastic 
treatment of the second step closely parallels the standard approach (Ford et a /  1965). 
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However, because of the generic non-differentiability of the sample paths supporting 
the measure, care must be taken when determining the extremum from differential 
equations and, also, because of the stochastic nature of the source terms (depending 
on xo), when computing the resulting contribution stochastic integrals must be used 
and the stochastic corrections to the classical Lagrangian (It6 terms) must not be 
ignored. Again, a safe procedure amounts to the following sequence: come back to 
the definition of the measure as a limit of its discretised version; then perform the 
integration; and only at  the end take the continuous limit of the discretised result. 
With the convenient choice of the classical Lagrangian under its diagonal form with 
respect to the modes, one need only perform the integration on one mode, the final 
result being obtained by a straightforward product over all modes at  the end. The 
Gaussian integral is performed in the appendix. Inserting for each mode k in (8), the 
corresponding expression for Gk provides the final analytic expression for the reduced 
measure P :  

r h  A. (dx')' f i b  ( d ~ ' ) ~  
( d x o ) ' + 3  ( d X 0 ) 2 +  v d t  Y ( x " = I  -- +-- + f 0 -  j1,, 2 d t  4 d t  d t  4 

\'/ 

where 

S stands for Stratonovich integrals; that is, by definition: for f and g two arbitrary 
diffusion variables 

with the property that Stratonovich integrals preserve the differentiation chain rule: 
for any arbitrary diffusion variables f and g :  
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Let us make here a few remarks. For definiteness, we have kept to Stratonovich 
integrals all through the previous derivation, but usual propagators are differentiable 
functions of time only, so that only one integral, namely S s',('; ak djk(s) ,  needs to be 
specified as Stratonovich. For all the other ones, any reference to It8 or Stratonovich 
can be ignored, as both prescriptions provide the same result in such cases. As usual 
in stochastic mechanics, one still needs to specify the quantum state (its transformed 
density matrix p^( tb ,  to)) in order to achieve the determination of the reduced measure 
and of the corresponding stochastic process for the small system xo .  But before 
discussing this question, we shall first derive some general consequences for the 
correlation functions, that will hold independently of the chosen quantum state. 

2.3. Correlation functions 

The generating functional for the correlation functions of the bath modes is straightfor- 
wardly obtained from the measure of the process ( 9 ) ,  by substituting & - hhk for 8 k .  
Hence, one easily deduces that the generating functional for the correlation functions 
of the bath modes, taken conditionally in the history of the small system and also in 
the initial and final values of the modes, takes the following expression: 

? ? ( x ' , x ~ , x ' ~ ,  hk)=exp h k ( t ) ? k ( t )  d t + -  2 I , ' h k ( r ) h k ( s ) % ( t ,  s) dt  ds  

where Z k  is the classical solution running from x k  at to  to x t k  at t":  

L:, 1,: 

Gk is any propagator, and FA the corresponding free solution (see the appendix). One 
can use, for instance, 

k k  x = x  - a k  

but this is only a particular choice, as will be discussed in the next section (aA(t ,  s)  is 
the propagator which vanishes at to and tb (as previously defined in ( 1 0 ) ) ;  then the 
bath variables obey a Gaussian distribution (conditionally in x ' ( t )  and x k ,  X I ! ' ) ,  with 
one-point and two-point correlation functions characterised by 

( x k ( t ) ) x ~ l , x , x  = f k ( t )  
( X k ( t ) X k ( S ) ) x " , , , x  =?k( t )?k  ( s ) + h 8 k k ' ( + k ( t ,  s).  

As a result, the two-point correlation functions involving the bath modes will be 
determined by the correlation functions of the small system according to the following 
equation: 

f i t  

fll 

( X k ( t ' ) X l ( t ) ) =  Gk(t', s ) [ a ~ ( ( Y h  -Pk)(S)X'(t))+((WZkak+8k)(S)X'(f))l d s  

+ (ak( [ ' ) X I (  t ) ) +  ( F A (  t ' ) x ' (  ;))+ h8kr(Tk( t ' ,  t )  ( i = O ,  k ' ) .  (12 )  
We shall restrict ourselves, in the following, to the case when the diffusion coefficients 
do not depend on the small system's variable: 

& = O  mb=a;=O. 
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Although such a restriction is not absolutely necessary, it has the advantage of leading 
to closed and simple expressions. In that case, and as a general consequence, the 
measure (7) of the diffusion process provides correlation functions which, besides (12), 
also satisfy 

a,lrz0a,(x0(t)F(r’)) - (  Q’( t ) F (  1 ’ ) )  +(U,( r ) F (  t ’ ) )  
N 

+ c [a,,,(( rl - P L ) (  t ) X k  ( t”) F (  t’))l t , , = ,  - ((6; + 4 a L)xL ( t )  F (  t‘))l 
k = l  

= - h 6 ( t - t ’ ) ( F ’ ( t ) )  

for any function F of xo. For the sake of simplicity in the formula, F has been chosen 
to be function of xo taken at a single time t‘ ,  but the same equations hold with F a 
general function of xo taken at arbitrary different times, provided a corresponding 
modification of the right-hand side. Then, inserting (12) one obtains that the correla- 
tions of the small system satisfy the following equations: 

a,lrz,a,(xO(t)F( t ’ ) )  - ( Q’(t ) F (  t ’ ) )  + ( U,( t ) F (  t ’ ) )  

with 

k = l  

Let us remark that when choosing a stationary propagator ( Gk( t - s)) these equations 
can be rewritten, after integration by parts, as 

dtA0d,(x0( t ) F ( t ‘ ) )  - ( V’( t ) F (  t ’ ) )  + ( U0( r ) F (  t ’ ) )  - (6p( t ) F (  r ’ ) )  
N 

+ (( ?Lo - P Lo) [( Yh - P - (6 k + ’k a L 11 ( t )  F (  f ’1) Gk ( t - th) 
k = l  

N 
- (( - P: ) [ ( Y L - P L )a  - ( 6 l + w i I) 1 ( t )  F (  t ’1) Gk ( t - t o )  

k = l  

= ( f ( t ) F ( t ‘ ) ) -  h6( t  - t ’ ) ( F ‘ ( t ) )  
with 



Stochastic quantum Langevin equation 547 

The same integration by parts, performed directly on the measure 9, allows one to 
rewrite the effective action Y(x") as the sum of boundary terms, depending only on 
the values at tb and t o ,  a single integral, representing a local interaction, and a double 
integral, describing the self-interaction of the small system and being equal to p ( j ) .  

Elimination of the bath degrees of freedom thus leads to an  equation for the small 
system which has the familiar form of Langevin equations: a self-interaction term ( p ) ,  
which a priori breaks time locality (memory effects), and a noise term (f), under the 
form of a correlation between the small system and a free field F. These equations 
being independent of the transformed density matrix entering the reduced measure 
(7 ) ,  the particular quantum state will characterise the stochastic process and its 
correlation functions only through the boundary (initial or final) values that will be 
specified in order to complete the solution of the differential equations. 

We shall now discuss the relation that exists between the correlation functions in 
the different representations. As recalled at the beginning of this section, the stochastic 
correlation functions identify with the time-ordered quantum correlation functions in 
a given state (after Wick's rotation (5)): 

( $ 1 T [ ~ ' ( t ' ) ~ J ( f ) ] l $ ) =  (x'(t ' )xJ(t))  

with, in particular, 
- k  - k  ( x k  ( t ' ) X k ' (  t )) = (ik( t ' ) i k ' (  t )) + h 8 k k ' ( + k  ( t ') t ) where x = x  - a k .  

Because of the differentiability of both the operators i k ( t )  and the classical solutions 
i k ( t ) ,  one also obtains 

(+I  T[kk(f ' ) ik'(  t) l i  $) = (ik( f ' ) i k ' ( f ) ) +  h S k k ' d f ' ( + k (  t ' ,  t )  

( $ l T [ f k ( f ' ) k k ' ( t ) ] l $ ) = ( i k ( f ' ) i k ' ( f ) ) +  h 8 k k ' d f g k ( f ' ,  f )  

( $ 1  T [ p ( t ' ) p (  t ) ] l $ )  = (ik( t ' ) i k ' (  t ) ) +  A 8 k k . [ d , , a f a k ( t ' ,  t )  - 6 (  t ' -  t ) ] .  

So, in particular, one will specify a given initial quantum state for the bath modes by 
the correlations of the operators ik(fO) (=ik) and k k ( f O )  ( = j k )  or, equivalently, by 
the correlations of the stochastic variables ik(  t o )  ( = x k )  and i k ( t O )  ( =kk): 

* k  A k '  - k  - k '  ($lx x l$)=(x x ) 
( $ l j " k ' l $ )  = ( i k i k ' )  

(16) 
( $(ik,$ k ' l  $) = (ikik') + h 8 k k '  

These properties will be used to make contact with the standard treatment of the 
quantum Langevin equation. 

3. Noise and time locality 

3.1. Noise associated with a bath state 

The previous derivation of the reduced measure shows the same arbitrariness as that 
encountered in the standard elimination of the bath degrees of freedom, when solving 
the equations of motion. Indeed, the extremum of the Gaussian kernel (8) or, 
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equivalently, the solution of the equations of motion (A4), is given by the general 
expression 

where Gk is any propagator, that is, any function satisfying (8;- u:)Gk( t ,  s) = 8 ( t  - s),  
and F k  is a free solution: 

~ i ( ~ )  = a k  e ~ h ( ~ - ~ ( , j + a * k  euk(f,l-O. 

Of course, different choices for the propagator Gk will result in different free solutions 
F k ,  so that (1 1 )  remains unchanged. For instance, the retarded propagator 

1 
1 GL( t, s) = -- e(  t - ~ ) [ e - ~ h ( ~ - ' )  - euh('-'j 

2mk 

will be associated with the free solution as defined by 

with 

r$ = -ukrk = - r l +  ukrk 

where r l , -  are functions of xo defined as in (10). As a direct consequence, the correlation 
functions will also satisfy reduced equations of motion (13 )  which exhibit the same 
arbitrary choice as in ( 1 1 ) .  As usual, the free solution plays the role of an additive 
term in the equations of motion, resulting in the superposition of a noise component 
to the classical motion. Thus, the choice of a particular decomposition between 
propagator and free solution will result in a particular decomposition between self- 
interaction and noise. Such a choice will be dictated by the physical assumptions one 
will make on the fluctuations of the bath modes, as will be seen in the following. Let 
us also remark that the classical solution, here determined by its initial and  final values, 
can also be specified in a completely equivalent way by its value and the value of its 
time derivative, both taken at initial (or final) time: indeed, ih  is differentiable, with 
a time derivative equal to 

at the initial time, and: 

at the final time. Thiis, the reduced measure can be looked at in several ways: as a 
joint probability on the history of the small system and on either the values of the 
modes at initial and final times to and t b ,  or the values of the modes and of their 
derivatives at initial time t o ,  or  else the values of the modes and of their derivatives 
at final time r ; .  The choice between these different ways to consider the reduced 
measure (which is arbitrary in principle) will also be dictated by the physical situation, 
and the corresponding assumptions on the fluctuations of the bath modes. In general, 
there will be two main physical situations. The first one, which is that of the usual 
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quantum Langevin equation approach, corresponds to a small system which is coupled 
to a bath of definite statistical properties at initial time t o .  In this asymmetric situation 
one will want to relate the time evolution of the small system to the statistical distribution 
of the modes and of their derivatives at initial time t o .  Hence, the convenient decompo- 
sition will correspond to the retarded propagator, the related free field then being 
determined by the initial values of the modes and their derivatives at initial time to .  
The second situation is that of a stationary quantum state, where the small system is 
coupled to a bath with statistical properties remaining unchanged with time. That is, 
one will study the time evolution which can result for the small system when the modes 
at times to and tb are supposed to have the same definite statistical distribution. Then, 
the convenient choice will be a symmetric propagator. Such will be, in particular, the 
case of the vacuum, calling for the Feynman propagator and its related free field. 
Leaving the latter case to a forthcoming study, we shall deal here with the first situation 
only, and complete the study of the quantum Langevin equation in its stochastic 
representation, comparing it with its equivalent operatorial representation. 

In order to obtain explicit and intrinsic expressions for the noise correlations, we 
shall make in the following the further assumption that the coupling is linear in the 
small system's variable: 

P k = P L X o  Y k  = Y;xo 8k = 6 ;xo (17) 0 
a k  = a;x 

with a ; ,  Pl,, y;, Sl, being constants, independent of xo and t. In that case, the noise, 
as defined in (14), will not depend on the small system's variable. Using the retarded 
propagator and its related free field fl", defined by 

One obtains the reduced measure (9) in the following form: 

x 
(1 + u i ) x + ( l -  M i )  - -2( r l -  - y:x 

wk 
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with 

djk ( t )  = ( y :  - P i )  dxo+  ( 8 :  + wi.i)X0 dr 

leading to the following equations for the correlations of the small system: 

drfioc3,(X0(t)F(t'))-( V ' ( t ) F (  t ' ) ) - - i ( xo (  t ) F (  f ' ) ) -  /A( t - s ) (xo ( s )F (  t ' ) )  d s  lrr 
= 5 ( t - t o ) ( x 0 ( t , ) F ( t ' ) ) + ( ~ n ( t ) F ( t ' ) ) - h S ( t - t ' ) ( F ' ( r ' ) )  (18) 

with 

N 

1(7)= c (Y(:-Pl)[(ri,-Pl)c3,GL(~)-(S;,+W:.;)G;(7)1. 
k = l  

Let us remark that the original measure @ (9) is symmetric under time inversion, as 
can be seen by inspection of the self-interaction and noise contributions (only the 
symmetric part in front of d j ( s )  d j ( t )  survives). Thus, the irreversible character shown 
by (18) and  (19) is due to the particular choice of decomposition, retarded propagator 
and input noise, and will become effective when a particular measure is chosen for 
the input noise, corresponding to a particular state. 

An identical parametrisation can also be used in the operator representation to 
solve the equivalent of equation (A4) for a k ( t ) :  

under the form 

In any representation, the stochastic process and  its correlation functions (obtained 
either from the reduced measure or from the operators) will only be determined when 
the quantum state is specified. The correlation functions being solutions of (18) will 
be determined when the correlations at the initial time are known, and in particular 
(for the bath modes) when the autocorrelations of the noise are given. Using (16), 
one easily obtains the following relation between the autocorrelations of the noise in 
the different representations: 
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One recovers for the noise autocorrelation function (up to a universal function Z( t, t ' )  - 
f o (  t - r ' )  which is independent of the bath state), the standard expression for the 
expectation value of the anticommutator of the noise (Ford and Kac 1986, Nakazawa 
1986). Moreover, the universal function is the sum of a transient expression X ( t ,  t ' ) ,  
which disappears when to is sent to --CO and tb to +-CO, and of an irreducible contribution 
which is precisely that of the vacuum, f o (  t - t ' ) .  So the quantum autocorrelation can 
be interpreted as the sum, up to a transient contribution, of the stochastic and the 
vacuum quantum autocorrelations. Let us recall that the expectation value of the 
commutator is also given by a universal function, independent of the bath state: 

(in Euclidean space: [XI, x'] = - h m u  so that 

1 
~ ( t -  t ' )  = - e ( t -  t ' )  [fin(t) ,f in(t ' )~ 

which is the usual fluctuation-dissipation relation). 
To sum up, relations (20) and (21) can also be seen to restore for the noise (as 

defined in (14)), precisely in the limit of infinite to and tb, the familiar relation between 
the stochastic correlations and their operatorial counterparts (time-ordered product of 
the quantum operators): 

(r~11~[4in(t)Pin(t')llr~1)=(f,n(t)fin(t'))+ G % ( t - t ' ) - ~ ( t ,  t ' )  ( 2 2 )  

where 
N 

G % ( 7 ) = - - h  @ k & ( T )  
k = l  

is the Feynman propagator of the input noise in the vacuum state. Finally, Wick's 
rotation (5) must be performed on all previous expressions in order to recover the real 
quantum correlations. 

3.2. Continuum limit and time locality 

In the last step of the program, one wants to characterise the fluctuations of the process 
governing the time evolution of the small system in a rather simple way, i.e. one wants 
to exhibit an evolution which is local in time ('Markov property'). For that purpose, 
the limit of a bath consisting of a continuous infinity of modes will be taken. As is 
apparent in expressions like (19, which determines the correlation functions of the 
small system, the statistical properties in the limiting case will be determined by the 
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mode dependence of the coupling, or more precisely by a function describing the 
spectral (frequency) dependence of the coupling constants. However, and  quite gen- 
erally, the effective self-interaction of the small system, as resulting from the coupling 
with the bath modes, will involve integrals that diverge and thus call for a renormalisa- 
tion procedure. We shall follow the same procedure as in Ford er a1 (1985) and 
introduce a regularising high frequency cut-off (say R), in the form of a modified 
density for the bath modes, which will allow one to recover the correct coupling in its 
infinite limit (R * CO). The renormalisation procedure, which will prescribe how to 
cope with the infinities appearing in the infinite cut-off limit and how to obtain finite 
physical expressions, will be defined later. Thus, the discrete summation over the bath 
modes will be replaced by the following continuous integral: 

where, for convenience, the bath modes have been labelled by their frequency K = wk. 

One must also recall that all expressions will have to obey Wick's rotation ( 5 ) ,  in order 
to identify with the quantum expressions. Then, defining quite generally for any 
arbitrary function g, a related retarded propagator by 

so that 

the self-interaction p in the time evolution for the small system (15) will be determined 
by the retarded propagator p = GL with 

In order to compute this propagator explicitly, let us introduce its Fourier transform, 
as defined by 

X 

6 ( w ) =  [ dte ' " 'G(r )  
J -x 

so that 

and 

are analytic functions in the complex upper half plane. Locality in time will now be 
shown to result from the following behaviour of the coupling constants ( p d  and  pr 
being arbitrary parameters): 

2 
@ ( K )  =- [pdK2+prK4] 

?r 
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(23) 

or else 

Noting that w i  becomes 

the self-interaction reduces to 

(3 i 
2 

pun( t ) + iw:a( t )  = -iKo8 ( t ) - ipdS( t ) + - prai( t )  + ipr6’( t )  + o - 

and the time evolution of the correlation functions of the small system becomes 

[ d t ( f i O S q p r f l ) d t  + p d d r  - prd:l(xo( f ) F ( t ’ ) ) + ( [  v’( l )  - KOxO(t)lF(t’)) 
= i (  t - to)(xo( to)  F (  t ’ ) )  - ( f i n (  t ) F (  t ’ ) )  + iR6( t - t ‘ ) (  F’( t ’ ) ) .  (24) 

These equations show the desired property: the time evolution has become local 
in the continuum limit; the previous integral involving a summation over the past has 
disappeared, leaving a pure differential equation, relating quantities taken all at the 
same time. This is sometimes referred to in the literature as a ‘Markov’ property, 
because of the memory loss in the equations of motion. However, it must be emphasised 
that the associated stochastic process (the reduced process), in general, is not Markovian 
(as can be easily seen, for instance, in the case when the small system is simply a 
harmonic oscillator). 

These equations also show that, in order to keep a physical meaning to their 
solution, one is led to assume that the diffusion constant fro, and the potential V, will 
also contain a cut-off dependence, so that the coefficients in the equations of motion 
(24) have a finite limit when the cut-off is sent to infinity. To complete the determination 
of these equations, one will have to prescribe the physical values of two corresponding 
constants, like for instance the mass of the particle and the quadratic part of the 
potential. Hence, according to the type of coupling, two renormalisations might be 
necessary: one for the potential, but also one modifying the diffusion coefficient 
(wavefunction renormalisation). The case pr = 0 provides the usual treatment of 
dissipation alone, by coupling to a bath of harmonic oscillators (Ford and Kac 1986, 
Nakazawa 1986, Caldeira and Leggett 1981), and corresponds to 
a;=-;= y ; = o  p ( w k ) f i f -  (pd-  and pr = 0, &-a). 
In those cases, radiation damping is not present and renormalisation only affects the 
potential. The absence of wavefunction renormalisation implies that the canonical 
commutation rules are preserved, although the system has become dissipative (Dekker 
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1986). Indeed, the commutation relation between position and velocity (or momentum) 
is determined by the diffusion coefficient (Davidson 1979) 

so that, in that case, the free system and the interacting system do  have the same 
canonical commutation rules. However, it must be emphasised that this property fails 
as soon as the coupling to the bath modes involves a frequency dependence of a higher 
degree as, for instance, by coupling through the velocity or to a higher spectral density 
of modes, only because renormalisation makes A,, go to infinity. Such will be the case 
for a particle which is coupled to the electromagnetic field, in the dipole approximation 
(Ford er al 1985): 

so that pd = 0, pr- poe2  and KO = 0. 
Many other types of coupling can be envisaged, that will combine couplings 

involving position and velocity of the small system to positions and velocities of the 
modes, and which will preserve the locality of the equations of motion in the continuum 
limit, as soon as relations (17) and (23) are satisfied. Coupling to the momentum can 
also be dealt with in the same completely stochastic way (translating to the Hamiltonian 
approach the Lagrangian treatment (Gardiner and Collett 1985)), as long as one 
assumes a quadratic coupling of the small system to a continuum of harmonic oscil- 
lators. 

ai, = o ,  pL2- e*,  y i  = S;=O and P ( W k )  - POW: 

4. Conclusion 

The purely stochastic approach, by using only measures and commuting variables, 
already presents several advantages for the quantum Langevin equation itself. The 
first one lies in the path integral representation, which provides the common formalism 
required for treating purely quantum effects, such as quantum tunnelling, mixed with 
statistical effects, such as dissipation. By means of diffusion processes, and of the 
associated stochastic calculus, this representation can be made sufficiently rigorous 
and general to cover the treatment of a wide variety of couplings, involving the velocities 
of the small system and the bath modes, and arbitrary dependences on the small 
system’s position. Such freedom should be helpful when discussing in a realistic way 
the effects of environment on quantum tunnelling occurring, in particular, in macro- 
scopic devices (Caldeira and Leggett 1983, Ford et a1 1988). By escaping the problem 
of operator ordering and the corresponding ambiguities in the choice of the Hamil- 
tonian, the stochastic approach provides a way to go beyond usual approximations 
(like the dipole one (Ford er a1 1985)). Quite generally, commutativity characterises 
a representation of the quantum Langevin equation which is very similar to its classical 
counterpart. This opens an  alternative way for, in analogy with the classical situation, 
relating this equation to a quantum extension of stochastic calculus. Ordinary commut- 
ing variables can still be used, instead of operatorial extensions, the difference with 
the classical case lying in the noise correlation functions, which depend on the quantum 
state. 

The stochastic representation also provides a means for re-analysing old questions 
about quantum mechanics from a new point of view. The diffusion processes used in 
this representation as a general frame preserve time reversibility, as required by quantum 
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mechanics (Nelson 1966). Time irreversibility, exhibited by a dissipative evolution of 
the small system for instance, has its origin in a particular choice of boundary 
conditions, like retarded propagator and input noise. This situation is identical to the 
familiar one which prevails between reversible classical mechanics and irreversible 
thermodynamics (Chandrasekhar 1943). That reversible elementary interactions might 
result in some cases in causal, and thus irreversible, macroscopic ones, such as the 
interactions with the bath, is not contradictory and can be understood in the same 
way as Feynman and Wheeler (1949) have shown for the electromagnetic field with 
the absorber theory. By referring explicitly to a bath with a large (infinite) number of 
degrees of freedom, one can raise the apparent incompatibility between diffusion 
processes and  quantum mechanics, which seems to occur when considering the small 
system alone. This formalism provides an alternative means of discussing the respective 
characteristics of quantum and dissipative processes based on processes of the same 
nature (with different boundary conditions) and  thus appears well suited for analysing 
the heuristic foundations of stochastic mechanics, such as the background field 
hypothesis (Nelson 1985). The limit of a continuum of modes, with a given spectral 
density, leads in both classical and quantum situations to the disappearance of memory 
effects, that is to time locality. However, the statistical independence which is charac- 
teristic of Markov processes is only obtained for the noise associated with particular 
states, such as in the high-temperature limit. This is another hint that the difference 
between quantum and classical stochastic processes lies in the choice of the statistical 
properties of the noise induced by the bath, rather than in the nature of the time 
evolution. 
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Appendix 

The Gaussian integral given in (8) is first discretised as 

2 ; -  t o  

n 
At,  = - t, =- AX, = xi+l- X, xo = x, xn = x'  

+ w2(x,)*At, - i ( ~ ,  + yITl)AxI -t(x,  + X , + ~ ) [ A ~ ,  - S,At,]+o(At,). 1 A Y ,  =- 

Taking the value of the latter at its extremum 2, one obtains 
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The continuum limit then provides an explicit form for G in the following expression: 

1 G(x,  x ' , j )  = T(r;)  - T ( t o ) - f S  ( 2 +  a ) [ d ( y - P ) + ( S  + w ' a )  d t ] + w 2 a 2  d t  

(A3) 
I,: 

with 

A(2 - a )  
T (  t )  = -f( 2 - a )  + y.2 A t  

where S stands for Stratonovich integrals and 2 for the continuum limit of the extremum, 
that is the classical solution: indeed, one can easily see that 2-  a is differentiable 
(hence T has a limit), and so is ( d / d t ) ( 2 - - a ) - y + P ,  so that 2 is solution of the 
differential equation " (" ( 2 -  a )  - y + P  

d t  d t  

with .2(t;)  =x ' ;  2(to) =x .  The latter can easily be obtained using the fact that 
Stratonovich integrals preserve the differentiation chain rule. Then, the general solution 
of (A4) is given by 

2 ( t ) = a ( t ) + y ( t ) + S  G ( t , s ) d j ( s )  I," ( ' 4 5 )  

where G is a propagator, that is a solution of 

[a :  - w*]G( t, S )  = S( t - 3) and dj(s)  = d (  y - P ) +  ( w ' a  + 8) d s  

and where $ is an arbitrary free solution: 
y =  a e 4 - l ; ! +  a* e w ( t " - t )  

x(  t o )  = x 
x( t;)  = x' 

Fixing the boundary values 

(a( to)  = ao; Y ( t 0 )  = YO) 

(a(r;)=a'O; y ( t A ) = y ' O )  

determines y' and thus completes the determination of the solution 2. Letting: U = 
e U (  t O - f ' !  

0 and 

and replacing 2 by its explicit expression (A5) in (A3), provides the final result for 
the elementary Gaussian integral: 

1 
h G(x, x ' , j )  =exp- [y 'ox ' -yox+Q(x-ao ,  x'-a'O , j )  + R W l  

with 

U 2 0  
x'x +z [x '(r--  ur+)  + x ( r +  - ur-)] 1 1 - U  

[XI2  + x2] -4  - 
1 - U *  

R ( j )  = -S a d j ( s )  - $ w 2 a  d s - f S  I,' 
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where 

5 5 1  

e - + y l  e w ( 2 f , , - r - \ ) +  e w ( f + s - 2 r , ; j  - U 2 [ e w ( r - y j +  e w ( s - r j l  

a ( t ,  S) =-- 
2w 2 w ( l - u 2 )  
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